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Imprecise Results: 

Utilizing Partial Computations in Real-Time Systems 

Abstract 

In real-time systems, a computation may not have time to complete its execution because of 

deadline requirements. In such cases. no result except the approximate results produced by the 

computation up to that point will be available. It is desirable to utilize these imprecise results if 

possible. We propose two approaches to enable computations to  return imprecise results when 

executions cannot be completed normally. The milestone approach records results periodically. 

and if a deadline is reached, returns the last recorded result. The sieve approach demarcates 

sections of code which can be skipped if the time available is insufficient. By using these 

approaches, the system is able to produce imprecise results when deadlines are reached. We 

describe the design of the Concord project which supports imprecise computations using these 

techniques. We also present a general model of imprecise computations which takes into account 

the influence of the environment, and show where our approach fits into this model. 
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1. Introduction 

In real-time computations, deadlines are crucial. A hard real-time system must finish its 

computation before its deadline or something undesirable might happen. X real-time system 

typically consists of many small jobs. Normally, real-time systems rely on their schedulers to 

decide when and which job is to be executed next. Schedulers, in turn, rely on the knowledge 

supplied by the programmer and the specification about job execution times, job dependency 

relationships, and the system deadline to make the scheduling decision. This works well as long 

as the system environment is static in the sense that the execution time of each job is fixed, the 

deadline requirement is fixed, and the number of jobs to be executed is constant. Much research 

~Liu73,Blazewics83] has been done in using different policies to provide a static scheduling. 

However, the scheme may not work  if the environment is dynamic. For example. in a radar 

tracking system, the number of objects to be monitored may be dynamically changing all the 

time. In an environment where hardware may fail independently, a processor's load may change 

if it must take over some jobs which used to  be performed by a now failed processor. If a job is 

in progress and suddenly the scheduler decides to change its deadline, it may have to stop its 

computation immediately. Thus, in the radar tracking application. if the screen is to be updated 

every 10 seconds, the job to determine the positions of all "visible" objects must complete within 

that time. If there are 100 objects in the field of view, but the procedure can track the exact 

locations for only 30 of them in the allotted 10 seconds, the system may miss some crucial objects 

among the 50 unprocessed objects. In this case, it is more desirable to obtain the approximate 

locations for all 100 objects. Such a system has two other advantages. It is flexible - if the sky 

suddenly gets cluttered, it should be possible to decrease the amount of time spent on each 

object, and thus get a more fuzzy view, but continue tracking all of them. Secondly, it lends 

itself to priority schemes - if, after viewing all objects. the system decides that some of these 

objects are more interesting, more time may be spent on them to get a more accurate 

positioning. Thus, sometimes i t  is advantageous in a real-time system not to carry out every job 

to completion, but t o  obtain results while computations are still incomplete. 



. 

In this paper, we propose several schemes for obtaining and utilizing results from partially 

completed computations. Since the computations did not complete, their results are imprecise. 

We suggest two different approaches that the programmer may use to construct procedures 

which are capable of producing imprecise results. The first approach is termed the milestone 

approach. Its central idea is to record meaningful partial results obtained at different points in 

the execution of the procedure; in the event of a deadline. the last recorded values are used as the 

result from the procedure. The second approach, called the sieve approach, defines sections of 

code that  cause existing results t o  become more precise. For example, in image processing, 

enhancement routines are used which increase the contrast in the picture. The system is allowed 

to decide if sufficient time is available to perform extra enhancements. Not executing them 

amounts to producing a result of inferior quality but will require less processing time. 

Both these approaches are particularly well-suited to iterative algorithms, though they can 

be applied to other kinds of procedures also. Many numerical algorithms involve iterating to 

improve precision iPizer83j. Several studies IBasu80, Finance85, Turski841 have been conducted 

on how computations can be recast into an iterative form. The SIFT system ‘Wensley78; records 

partial results at  the end of each iteration. and uses them for error checking in a replicated 

system. We think that using iteration to improve results is common enough in real-time syscems 

for our techniques to  be of widespread use. 

The rest of this paper is organized as follows. Section 2 outlines the milestone approach and 

the sieve approach, and compares them. Section 3 presents a generalized model of imprecise 

computation, and the relationship of the two approaches to that general model. Section 4 

describes Concord, a system that supports imprecise computations. Section 3 discusses 

extensions to the imprecise results technique. We give our conclusions in Section 6. 

1.1. Relationship to other work 

Both sieves and milestones are presented as language primitives that take advantage of 

system support to provide clean, easy-to-use aids for real-time programming. While it is 

possible to  achieve the same effects with the constructs currently available in real-time 

languages. it would be awkward to do so. and the resulting program wouid not be semantically 
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clean or clear. So these techniques do address a problem which existing languages do not handle 

very well - that  of terminating execution of a procedure before it is complete, and obtaining 

results from it. In fact, we feel that  imprecise computation is a more general model than the 

traditional precise model. Always executing a procedure through to completion is a special case 

of imprecise computations in which the imprecision is reduced to a minimum. 

Our approach to real-time system programming is different from other work on real-time 

programming languages such as Real-Time Euclid !Kligerman86i, Ada' [DoD83\ and Modula 

[Wirthy'l]. Most of them provide primitives so that programmers may have more precise 

control, and environments cause less variance, in execution time. They also provide ways to 

specify real-time delays in the code. For example, Real-time Euclid allows no dynamic data  

structures and recursive invocations which may have unpredictable execution time. .Ida provides 

delay statements and pragmas to specify time constraints. .Moduia restricts context switches, and 

expects good programming technique and testing to ensure that deadlines are met. We consider 

these methods to be low-level, in that  they expect the programmers to manage the timing issues 

themselves, with little or no assistance from the language or the system. The programmer has to 

explicitly ensure that each piece of code meets its deadline, and is only assured of minimal 

interference from the system. Confidence that  the system will meet its deadline usually cannot 

be established until the program is tested under many dynamic circumstances. 

Language primitives allowing programmers to specify only a desired completion time are 

not good enough for hard real-time systems. Our approach, instead, attempts to transfer the 

burden of meeting deadlines to the supporting system to a large extent, and only requires the 

programmer to  assist it in some simple ways. Our primitives work at the procedure level. and 

leave i t  to the system to decide whether there is enough time to execute segments of code. 

Because they relate to the algorithm, our primitives can be added to any programming language. 

It is not our intention to suggest that  this approach is in all respects superior to others: it 

requires a powerful scheduler, and in some cases may involve extra overhead. However. our 

'-4da is a registered trademark of the U.S. Govt. - Ada Joint Program Office. 
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scheme can handle cases that traditional approaches cannot. It is our objective to  explore an 

alternative approach to real-time programming and to demonstrate that  it can be easily used. 

2. Primitives for imprecise computation 

2.1. The milestone approach 

Many computations perform their operation in distinct stages or phases :Chandy83, 

Lampson76l. After each stage, the system has solved more of the problem and therefore 

produces an intermediate result which is closer to its final form. I t  is this idea which motivates 

our milestone approach of saving imprecise results of distinct significance. In case that the 

system is t o  terminate immediately, the last saved imprecise result is returned as the final result 

of the job. 

In this approach, the primary assumption is that  the result from the procedure increases 

monotonically in correctness as the procedure progresses towards completion. Therefore, the 

longer a procedure executes, the more correct the result is. This corresponds to a continuous 

correctness function as shown in Figure 1. C,(t) is the correctness of the result a t  time t. The 

time tm represents the minimum time it takes for the procedure to begin to produce a useful 

result. In practice, because software consists of discrete chunks of code (e.g. loops). correctness 

can be better represented as a staircase function as shown in Figure 2. Each step indicates the 

completion of another phase of the computation, such as another iteration of a loop. We suggest 

that each step could form a "milestone", and the intermediate results at  the end of each step 

could be saved. If the procedure terminates prematurely. the last set of recorded values could be 

returned as the most accurate results available from the procedure. 

2.1.1. Features of the approach 

The system model for the milestone approach is that  of client!s rv r. The client, r caller 

procedure, invokes the server, or callee. providing i t  with a set of input parameters. The 

deadline of the requested operation can be part of the input parameters if it is known to the 

client at the moment of invocation. Otherwise, the system needs to provide some mechanism to  



, 

Figure 1. A continuous correctness function 

I I 
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Figure 2. A staircase correctness function 

inform and to stop the server when the deadline becomes known. The callee starts executing the 

procedure when the request is received. If enough time is available, it produces the required 

results and returns them to the caller. On the other hand, if the deadline is reached while the 

callee is still executing, it terminates immediately, and returns a set of imprecise results instead. 

Two language primitives are used by the programmer to specify a computation involving 

milestones. In the callee. the 

impreturn(vartabfe-list) command is used to indicate that a milestone has been reached. The 

current result value is always the first variable in the list. The values of the variables in the list 

other than the result variable constitute the intermediate results available at the milestone. This 

list should include any global variables that may be modified by the procedure. because if the 

Our proposed primitives use the syntax of the C language. 
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global is modified subsequent to the milestone, but computation is terminated before the next 

milestone, the global may end up with a value that is inconsistent with the rest of the system. 

This variable-list would thus, in the general case, be a superset of the values normally returned 

as results if the call ran through to  completion. In addition to global variables, the variable-list 

may also include some error indicators which may be used by the caller to determine how precise 

the result is. 

The caller uses the impresult(procnarne, handler) command to indicate whether milestones 

are to be recorded by the procedure named procname. I t  is possible that even if the callee 

procedure contains specifications of milestones, the caller may not wish to record milestones and 

receive partial results. This may be because there is enough time to complete the request, thus 

there is no need to incur the additional overhead, or because imprecise results are unacceptable. 

The impresult command also specifies a handler which interprets the values of the intermediate 

results returned along with the result variable. The handler accepts the complete set of 

intermediate values, and performs appropriate modifications to the result variables so that  they 

can be meaningfully utilized. For example, a caller may contain statements like 

... 
impresult(sum, eztrapolate); 

total = sum(artayA); 

... 

and the handler eztrapolate is defined as 

eztrapolate(z, z, y) float z, 2, y; 

I 
I 

z = z  * y / 2 ;  

return(z); 



The impresult statement associates the handler eztrapolate with the server sum and triggers the 

milestone primitives implemented in sum. Assuming that the impreturn statement in sum 

returns the total array size in the third variable (i.e. y) and the number of array elements already 

processed in the second variable (Le. x), the handler can compute the expected result for the 

whole array using the current result z by the formula z*y/x and returns that  as the precise 

result. In general, the handler may perform the function of correlating the variables in the list. 

applying any transformations or compensation necessary, and arriving at a set of modifications 

to the intermediate result. The handler is invoked only if the computation returns an imprecise 

result. If the callee terminates normally, the handler is bypassed entirely. 

It is necessary to specify an imprecise result handler before invoking a server for the first 

time, to trigger the milestone mechanism. By default, the system assumes that  the caller expects 

a precise result. It is also possible that the caller may want t o  associate different handlers within 

different calling instances so that  imprecise results can be interpreted in different ways. X 

program can change the association between a callee and its handler by assigning a different 

handler using the impresult statement. There are two special handlers defined for the impresult 

command: a NULL handler indicates that the milestone mechanism in the callee should be 

utilized, but no special handling of the imprecise result is necessary (i.e. the imprecise result is 

accepted as is); an OFF handler indicates that  the milestone mechanism is to be turned off. This 

is needed because once a handler has been associated with a procedure, it continues to be 

associated until the next invocation of impresult. 

2.1.2. Design and semantics of milestone primitives 

One of our design decisions for both the milestone primitives and the sieve primitive to be 

discussed later is that  it must follow the C syntax so that it is readily compilable using a 

standard C compiler. There are many advantages to this approach besides saving the trouble of 

changing the C compiler. First, an application program designed with the imprecise system 

support in mind can be run on a normal system without modification. All the normal system 

needs to do is provide two no-op functions for the impresult and impreturn statements in order 

to make it behave like normal application programs. Second, it provides transparency. I t  is 
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possible to change the mechanism for producing imprecise results without changing the source 

and recompiling. I t  is even possible to provide special architectural support for the primitives 

without rewriting any application. 

The semantics of the primitives is similar to that of exception handling [Goodenough73]. 

Recording an imprecise result with impresult is like raising an exception condition; the difference 

is that the callee is terminated in the latter case of exceptions but not in the former case. 

Executing an impreturn is like handling an exception, especially if the exception model is t ha t  of 

resumption. The impresult mechanism resembles the signal mechanism of C. The milestone 

approach itself is a special case of exception mechanisms. The reason for the imprecise 

"exception" is the insufficient execution time. 

2.2. The sieve approach 

The sieve approach is based on the concept of sieve functions. Sieves are functions whose 

only purpose is t o  "refine" their inputs, i.e. make them more precise. The outputs correspond in 

number and type to the inputs, and are semantically more precise versions of them. An example 

of this is the Gauss-Seidel iterations method for solving simultaneous equations 'Stark701. In 

this method, all the unknowns are initialized to  arbitrary values, usually 1. Then each equation 

is used to solve for one unknown, till all the unknowns have a new set of values. Thus, a 

complete iteration of this technique starts with a set of values, and refines them to produce 

better approximations to the value of each unknown. 

Sieve functions have the delightful property that it should not be fatal to the correctness of 

the procedure if a sieve is not executed. Such procedures are more common than it might seem. 

For instance, the loop body of many iterative functions can be viewed as a sieve because each 

iteration computes a closer approximation to the final answer. In practice, it is not possible to 

tell syntactically whether a given procedure is a sieve or not. Thus, in the above example of 

Gaussian iteration, the input values might be all 1.0, and the outputs might be 1.8, 2.1, 1.7 and 

so on. Therefore it is left t o  the programmer to ascertain that  any procedure designated as a 

sieve really does refine its inputs. Actually, any section of code may be designated as a sieve if it 

refines the result variables and there is no other side effect produced by the code. 
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The sieve approach is based on the assumption that sieves perform computation in order to 

increase precision, and as a corollary, they may be bypassed (not executed) and the effect would 

be simply loss of precision. This provides a way to execute procedures faster at the cost of 

imprecision. The programmer specifies that some of the computations are sieves, and the system 

has the option of either executing the sieve or discarding it. This decision is made by the system 

according to the nearness of the deadline. If the deadline is very close, the system may opt t o  

omit all sieves and just conduct the simplest computation through the rest of the procedure to 

return an imprecise result. 

The semantics of the sieve approach can be understood in terms of the staircase correctness 

function. Each step of the correctness function corresponds to the execution of a sieve, which 

increases the correctness by an amount corresponding to  the height of the step, and takes time 

corresponding to the width. Omitting a sieve has  the effect of removing a step, resulting in the 

rest of the correctness function moving to the left (taking less time) and finishing a t  a Lower level 

(the result is less precise). This is shown in Figure 3, where omitting a sieve reduces the 

correctness from 1 to C,, while the execution time decreases from t z  to t , .  

, I 

I rl 
c3 

Figure 3. Omission of a sieve 
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2.2.1. Features of the approach 

The sieve approach is concerned only with the callee. A section of code in the callee which 

constitutes a sieve is bracketed by the sieve command: 

sieve I 
.... /* code  for the  s ieve *,/ 

.... 

During execution, the system executes these sieves if the deadline has not yet been reached. Once 

the deadline is reached or getting close, the sieves are skipped, and a result is produced as fast as 

possible. One significant aspect of this is that the result may be produced not a t  the deadline but 

shortly thereafter. This is acceptable if the deadline is flexible, i.e. it is a soft real-time system. 

It is not acceptable if the deadline represents an emergency, such as a robot crashing into a wall. 

However, if the program can be written so that the sieve is the last section of code in the 

procedure, skipping it makes the result immediately available. Another noteworthy aspect is 

that using the sieve approach, the caller has no way of telling whether the procedure executed 

normally or some of the sieves were skipped to make the deadline. 

This approach is even more effective if the expected time of execution of each sieve is also 

provided. This gives the system more flexibility in scheduling to meet hard deadlines. The 

system can decide which sieves to  execute so that the computation can be finished in time and yet 

the result is most precise. It can also make trade-offs, if some of the sieves are to be executed 

repeatedly. For example, if sieve S1 is normally iterated 100 times and sieve 52 is to be iterated 

30 times, and if half the normal execution time is available, each sieve may be executed half as 

many times as requested. If the two sieves work on different variables, this has the effect of 

distributing the imprecision instead of lumping i t  all on one variable. 
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2.3. Comparison of the two approaches 

The milestone approach is basically a pragmatic, system-level technique. It  is more difficult 

to formalize, but easy to use from the programmer’s point of view. It is explicit in permitting a 

variety of imprecise results from the procedure. The selection among these mechanisms is 

implicit and inflexible - it is chosen by reaching a deadline. It does not need complex support. 

The milestone approach is a passive approach in that termination is determined by the external 

intervention. The program behaves optimistically - i t  always assumes that it has enough time to 

finish. Saving imprecise results is simply a precaution. 

The sieve approach is a semantic, language-level technique. It can be better formalized, 

using the formalism similar to a guarded command IDijkstra75!. I t  is implicit in the way it 

specifies the possible set of imprecise results returned, but explicit in the selection mechanism, 

which is built into the system. The sieve approach is an active approach in that the program 

explicitly decides whether a sieve is to be executed or not. The program decision is always 

pessimistic; it executes a piece of code only when it knows that i t  can be finished. 

It is expected that users will use sieves when the computation naturally takes the form of 

successive refinement of values, and use milestones for saving intermediate results after distinct 

stages of computation. Actually, users may use both primitives in one program. I t  is desirable 

to use milestones to save and produce some basic results before using sieves to improve them 

further as long as there are time and resources available. 

3. Model of imprecise computations 

Computations performed by a computer program are usually modeled as transform 

functions which transform some input values and an initial state of the program to a final s ta te  

with some output values produced. In reality, however: a program execution with the same input 

and initial state may actually produce different results due to the differences in the environment. 

In some applications, these differences are expected, thus all different results are considered to  be 

correct. In other applications, these different results may be regarded as approximations to a 

good result and therefore are accepted with reservations. 
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In a distributed system, variations in communication delays may lead to  different execution 

sequences. If two separate requests are entered into an airline reservation system simultaneously 

from different places, either one may be processed first. The nondeterminism inherited in the 

system may cause different results to be produced, but both execution sequences are correct. In a 

real-time system, deadline constraints may cause a procedure execution to be terminated 

prematurely. In a fault-tolerant system, crashes and recoveries can result in various possible 

execution sequences, and the results obtained may not be identical for all of them (due to "fail- 

soft" mechanisms). 

I t  is therefore desirable to have a model of computation that includes the factor of 

environments. The environment can be modeled as a state machine which interacts with the 

state machines of concurrent programs. However, such modeling is complicated and often 

unnecessary. It is often enough to  introduce the environment as a parameter of a computation 

and assume that it is unchanged throughout the computation. For example, deadline is a 

parameter which can be specified before the computation starts. The fact whether it is 

predefined or not is irrelevant to the actual computation performed. Some aspects of the 

environmental variations can be hidden from the program altogether, they will not be shown in 

the computation model. Other aspects may affect the program execution and therefore should be 

dealt with at  the program and user level. 

Imprecise results caused by time restrictions can be viewed as a special case of a more 

general model which takes into account the effect of variations in environment on computations. 

In a real-time system, environment inputs are usually handled by the system scheduler which in 

turn changes the scheduling decision in the form of deadlines and priorities. The environment 

can also influence the computation directly by crashing a particular processor or by interrupting 

a computation. 

We define a general parameter E to be the subset of the environmental state which will 

affect the execution of a program P. We model the computation C which is an instantiation of 

P by the following transition function: 
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C : I X S  x E - 0  X S  (1) 

where S is the set of states of the program P, I is set of input values, and 0 is the set of output 

values. In other words, given an initial state S, input values I, and an environment state E, we 

have 

( 0 , s ' )  = C ( I , S , E )  (2) 

for some output value 0 and final state S'. We are not concerned here with any side effects the 

computation C might have on the environment, The fact t ha t  the result of Computation C 

might lead the environment into a state E' different from its initial state E is thus not expressed 

explicitly in (1) and (2). 

We can use the model t o  reason about the different behaviors of a program under different 

environments. A program which produces different results under different environments is 

logically equivalent to a set of programs free of environmental influences that produce 

corresponding results. Similarly, using a single server to produce a series of imprecise results is 

logically equivalent to executing many copies of the server with different execution times. 

Therefore, the original program does not uniquely define the actual computation which will be 

performed. Rather, it defines a set of possibilities. 

The imprecise computation model can provide better performance and reliability because it 

can endure imprecisions in the environment and produce a set of results. The problem is how to 

choose the best result from the set of possible results. In a multi-version system, the result from 

a server running on the most precise hardware is usually regarded as the most accurate. 

Sometimes the result from the fastest server is selected if the performance is more important 

than accuracy. 

In this paper, we are particularly interested in environmental imprecision in execution time 

and its effect on the output results. If the precision of the result produced increases 

monotonically with execution time, then we can always choose the result produced by the 

computation with the longest execution time. *Most applications do possess this monotone 

property. Our primitives, based on the imprecise computation model, therefore provide users 

with a simple way to  obtain better results from incomplete computations. 
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4. The Concord system 

We are designing the Concord system iLin871 which can support imprecise computations. 

The system provides both a programming tool so that a user can design imprecise computations, 

and run-time support so that  imprecise results can be reliably and meaningfully returned. Such 

a system would give users much greater flexibility in implementing their applications. 

The Concord project uses the milestone approach to permit procedures to return imprecise 

results. To record the milestone results, and return the latest if the deadline is reached, a 

supervisor is introduced between the caller and callee. The caller sends the call t o  the supervisor. 

The supervisor starts up the callee, and periodically receives the milestone results from it. The 

supervisor keeps track of the last set of results received. If the deadline is reached, i t  terminates 

the callee, and sends the imprecise result to the caller. If the callee completes, the value returned 

is passed on to the caller. The configuration is shown in Figure 1. 

This implementation has the advantages of being simple, having comparatively little 

overhead, and of being modular. It separates the functions of the callee from the system support 

issue of recording the results. On a distributed system, i t  has the additional advantage of fault- 

tolerance if the supervisor is on a different machine from the callee. 

The introduction of the supervisor is not the only way to  implement the milestone 

approach. The system can reserve a milestone space in the cailee’s address space for 

Client 
I 1 

Server - 
Supervisor I , 1 Caller 1 > j 

I I I r - - - - !  m I 

! Handler 1 -z--- - 
i 

I Callee ! 
I I 

Figure 4. Concord process structure 
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intermediate results. The size of the milestone space is exactly the same as the size of the final 

result variables plus the total size of the variable list specified in the impreturn command. -411 

these are known at the compile time. During run-time, when an impreturn statement is 

encountered, all the system has to  do is to copy the current value of all those variables into the 

milestone space. Since i t  is always the last set of values that  are returned, only one such set 

needs to be kept. When a n  imprecise value is returned, the handler is invoked with the 

intermediate results. 

Concord also supports the sieve approach. As discussed later, Concord includes a 

sophisticated system scheduler. Each sieve primitive queries the scheduler to determine whether 

enough time is available for the sieve to be executed. Using the C preprocessor, the sieve 

primitive is translated to  if (enough-tirne()), which queries the system scheduler. This 

preprocessor statement is contained in a header file which is part  of the Concord language 

library, discussed in the next subsection. 

4.1. Run-time system implementation 

Concord will be implemented on a network of Sun workstations. As mentioned before, we 

uses C as the target language because it is popular and easy to work with. We may switch to 

some other language which is more suitable for distributed applications after we have some 

I 

Concord li rary client , B  

- _ - - - - _ _ _ _ _ _  

server 

4 Distribution spec - 

Figure 5. Concord language processor 
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experience with Concord. Concord has two components: the language processor and the run- 

time system. The language processor, shown in Figure 5, includes libraries for the impreturn and 

impresult primitives, and a loader for distributing the modules produced by the compiler among 

the different processors in the system. The sieve primitive is very easy to  support. It is simply 

converted to a call to the system scheduler to determine if enough time is left t o  execute the 

sieve. The impreturn primitive is a procedure call to the supervisor, which records the 

arguments provided as a milestone. The impresult primitive is implemented as a procedure call 

to the run-time system, to specify whether the R P C  messages should be issued to  the supervisor, 

or directly to  the cailee in the event that milestones need not be recorded. The impresult 

procedure also associates a handler to the RPC, so that if the computation terminates 

prematurely, the run-time system will invoke the handler to process the imprecise result. 

The Concord run-time support is a layered distributed system which can support imprecise 

result communications. For the Concord prototype we plan to reuse as much as possible the 

run-time system designed for the Resilient Procedure (RP) project iLin86;. Both projects 

support imprecise computations. RP supports imprecision arising from multi-version software 

[Chen78] and hardware while Concord supports imprecision in execution time. It is our ultimate 

goal t o  unify the projects together t o  support general imprecise computations. 

4.2. Scheduling in Concord 

The proposed Concord system includes a sophisticated scheduler. This scheduler is designed 

to  take advantage of the possibilities for returning imprecise results from partial computations. 

This has substantial impact on scheduling, because the emphasis changes from meeting deadlines 

to finding the optimum schedule that  will minimize the imprecision in the results. The concept 

of average error of all results computed is defined, and the objective is to minimize this. We are 

currently considering various heuristic algorithms to produce near-optimal schedules 'Liu87;. 

The scheduler also addresses the problem of not allowing imprecision in a particular value to 

accumulate too much due to repeated calls to some procedure. 

Sieves interact with this scheduler directly. Each sieve command is translated into a call to 

a system scheduler routine which makes the decision to ascertain whether sufficient time is left 
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before the deadline to execute the sieve. If all sieve functions include time estimates, the 

scheduler can analyze all these estimates at t.he beginning of the procedure, and determine which 

sieves are to be executed in order to optimize the use of the available time, similar to static 

scheduling. 

To  use this approach, the scheduler must be intelligent in order to get the proper benefit 

from the scheme. In general, this is not a problem because most real-time systems have a 

sophisticated scheduler. The possibility of skipping certain sieves makes the scheduling decision 

much more flexible. 

5. Extensions to the scheme 

5.1. Applications in other areas 

Imprecise computations as a technique for handling environmental variations has 

applications in fault tolerance and distributed systems. The milestone technique can be used to  

provide checkpoints for fault-tolerance. If the supervisor is on a machine different from the 

callee, and the callee’s machine crashes, the supervisor has a partial result which it can return to  

the caller’s handler. The handler h a s  the option of either accepting the imprecise result, or 

resuming the callee from that checkpoint on a different processor. It can even invoke a different 

procedure to perform some patchwork to make the result more acceptably precise. 

Since the model of computation includes the idea of a procedure being actually a set of 

computations among which one is selected by the environment, it can easily be extended to 

include the idea of N-version programming iChen781 and Resilient Procedures [Lin861 for fault 

tolerance. In both techniques, several computations are performed and the final result is chosen 

from among the different results obtained. 

In a distributed system, there are often variations in processor precision, memory etc. 

among different nodes. The model of imprecise computation can be used to specify what 

environment is required for each computation, facilitating optimal resource allocation. hlso, if 

some resource is not available, or is deficient in some respect (such as less precision) it is possible 

to use the imprecise result t o  gauge if the error is within acceptable limits - the handler will 
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realize that  an environmental variation has occurred, and can take appropriate action. It is also 

possible to  simulate some resource which is not available, to bring the precision back to 

acceptable limits. 

5.2. Future extensions 

The multi-version concept can be used to  define several versions of a procedure, of which 

one will be executed for which the environment is appropriate. Thus, i t  may be possible to have 

several versions of a procedure, which take differing amounts of time, and one will be picked 

which best matches the time available. Since the selection process is entirely a matter of 

matching available environmental resources to requirements, it can be done entirely at the 

system support level. 

The supervisor in the milestone approach can take a more active role by using extrapolation 

to predict the final result instead of merely returning the last one. This is possible when the 

successive milestones form a pattern, as would be the case if they were the results of successive 

iterations of a numerical algorithm. The extrapolation procedure can be user-defined. 

Computations which do not increase monotonically in correctness can be made suitable for 

the milestone approach by appropriate choice of milestones. The idea is to pick points on the 

curve of fluctuating correctness, so that  they form a monotonically rising curve. This will satisfy 

the criterion that later results should be more precise than earlier ones. 

The results recorded in the milestone approach can be enhanced to  constitute a checkpoint 

so that it is possible to perform forward recovery for fault-tolerance purposes. If the values 

constitute a checkpoint, and the partial results are not acceptable, they can be used to resume 

the computation from where i t  was terminated. 

6. Conclusions 

The basic concept of returning imprecise results from procedures to allow for environmental 

variations has several applications, particularly in the area of real-time programming. It can be 

used to allow the user to separate out  the algorithm code from the code that  deals with 
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massaging results t o  allow for machine- and environment- dependent limitations, and abstract 

out the non-algorithmic code in special handlers. On the one hand it  allows the system to take 

up as much of the burden as possible in the form of system support, and on the other hand i t  

gives the user power, flexibility and control. The approaches discussed are not difficult t o  

implement, and do not involve much overhead. 

We see our approach as being the “natural” way to handle partially complete computations. 

When humans are faced with the same situation of not being able to complete a task, they tend 

to store the results obtained so far, because those results may be useful later. I t  seems reasonable 

for computers to do the same, rather then discard incomplete computations. We would like to  

see the concept of imprecision to be built into programming languages intended for production 

code. 
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